

CENTRE NATIONA DE LA RECHERCH SCIENTIFIQUE 2nd Mechanisms and modelling of waste/cement interactions international Workshop

Speciation and role of iron phases in cement to fix heavy metals

J. Rose^{1,2}, A. Benard ^{2,3}, A. Masion ^{1,2}, P. Chaurand ^{1,2}, I. Moulin ⁴, J-Y Bottero^{1,2}

1: CEREGE UMR 6635 CNRS-Univ. Paul Cezanne, 13545 Aix en Provence, France 2 : ARDEVIE, Europole Méditerranéen de l'Arbois, 13545 Aix en Provence, France 3: INERIS Domaine du Petit Arbois, BP 33, 13545 Aix en Provence, France 4: LERM, 10, rue Mercoeur, 75011 Paris, France

rose@cerege.fr http://Se3d.cerege.fr http://nano.cerege.fr

> October 12-16, 2008 Le Croisic/France

Fixation of heavy metals (HM) in cement (OPC)

- Many OPC mineral phases can fix HM:
- C-S-H : Pb, Zn, Eu...
- AFm : Cr (III, VI),
 - Ettringite : almost all !!!
- Other minor phases.... (LDH...)

Leaching of Portland cement (as an example)

Leaching of Portland cement (as an example (30 days...at 35°C in water)

What about long term evolution (no ettringite...)

Leaching of Portland cement (as an example)

What about long term evolution (no ettringite...)
 Iron 2 Iron (III) is highly incoluble.

Iron (oxyhydr-)oxide in natural systems

Natural system: (in oxic zones, near neutral pH)

Iron (oxy-hydr-)oxides for waste treatment

- Highly reactive minerals
- Many metals and metalloïds can be adsorbed or incorporated
- They are used as adsorbants (water treatment, physico-chemical processes)

Iron phases in cement?? µ-XRF profiles

After long term leaching : one of the only remaining phase?

Iron in Portland cement

Hydration of C4AF what do we know?

Iron in other cements: slag,...

Aim of the work

- To determine the speciation of iron on synthetic system (C4AF...)
- To determine the speciation of iron on OPC... (still ongoing research)
- To determine the interaction with heavy metals on synthetic system

To determine the speciation on leached OPC...?

Molecular scale approach: determination of the iron speciation in cement phases

Structure at the local scale : X-ray Absorption Spectroscopy

Element	K1S	L ₁ 2S	$L_2 2p_{1/2}$		
Н	13.6 (eV)				
••••					
Ar	3205.9	326.3	250.6		
Κ	3608.4	378.6	297.3		
Ca	4038.5	438.4	349.7		
Ti	4966	560.9	460.2		
V	5465	626.7	519.8		
Cr	5989	696	583.8		
Mn	6539	769.1	649.9		
Fe	7112	844.6	719.9		

XANES = X-ray Absorption Near-Edge Spectroscopy : REDOX STATE EXAFS = Extended X-ray Absorption Fine-Structure : ATOMIC ENVIRONMENT

XANES = fingerprint EXAFS = fingerprint

XANES = fingerprint EXAFS = fingerprint

- Reference spectra :
- Redox state
- Nature, number
 And distance of
 neighboring atoms

From 0 to ... 4-5 Å (single scattering : low mean free path)

EXAFS

In a sample : Fe is in C4AF (40%) and Ettringite (60%) Ettringite 0.6 Sample = 0.6 Ettringite + 0.4 C4AF 0 $k_{\chi}(k)$ C4AF -0.6 The same with XANES -1.2 6 10 4 8 12 K(Å ⁻¹)

Local scale study

Procedure :

- PCA, then linear combination... (XANES and EXAFS)
- EXAFS modelling (XANES : still difficult on heterogeneous sample)
- With XAS : the fit does not indicate that the mineral exist: it reflects a similar atomic structure
- XAS does not require long range order.

RESULTS : Hydration of C4AF in LW (without sulfate)

Hydration liquid/solid ratio of 0.5, <u>10</u>, 60.

Hydration of C4AF in LW (without sulfate)

Hydration liquid/solid ratio of 10

 Comparison with FeOOH, Fe-oxides; carbonates, AFm, Ettringite, C4AF, C2F

AFm and Ettringite from Moschner et al GCA, 2008

EXAFS modelling

Fe - Fe distance : how can we go further?

Structural approach

Structural approach

Hydration of C4AF (in LW)

Iron in hydrated Portland cement

Iron in hydrated Portland cement

Iron in hydrated Portland cement

In OPC at the micro scale

Summary

- Hydration of C4AF (-SO₄) : FeOO + Fe in hydrogarnet (No Fe and AFm??)
- In presence of SO4 (CaSO4) : ettringite (Mochner et al, 2008)
- In OPC : remaining C4AF (local scale) + FeOOH + AFm (??). More amorphous Fe at the surface.

What is the role of iron phases in heavy metal fixation

- Stage 1: C4AF + Heavy metal interactions...
- Stage 2 : on 'real' system...

C4AF hydrated in presence of metals

 Fe and lead : isotherms: (L/S ratio (0.5 to 60); with LW, [Pb]_{initial} from 10⁻³ to 8.10⁻³ mol/l)

Reactivity between iron phases and metals (pure system)

C4AF hydrated in presence of metals

Fe and lead : isotherms: (L/S ratio (0.5 to 60); with LW, [Pb]_{initial} from 10⁻³ to 8.10⁻³ mol/l)

EXAFS at the Pb L edge

Pb radial distribution function

EXAFS at the Pb^E LIII edge (Pb+FeOOH)

C4AF hydrated in presence of metals

Fe in presence of Cr

EXAFS at the Cr K edge

Atomic pair	R()	σ()	Ν	Residue
CrCr/Fe	3.29	0.080	2.0	0.0375
CrCa	3.48	0.080	3.6	
CrCr/Fe	3.55	0.102	3.5	

C4AF in presence of Cr(VI)

C4AF in presence of Cr(VI)

And in leached Portland cement?

Lead and C-S-H

First EXAFS results (noisy)

First fits with Fe in the second coordination sphere

Fe in second coordination sphere

EXAFS results

Conclusion

- Existence of FeOOH amorphous phase after cement hydration
- Iron phases formed after C4AF hydration strongly "incorporate" metals (Cr, Pb...)
- Metal and iron in cement: needs further investigation (µ-XRF at the micron scale in leached zones...)
- Implications: iron(III) phases may play a positive role for the long term fixation of metals and metalloids... but under oxic conditions (reductive dissolution of iron).

Acknowledgment

- J-L Hazemann and O. Proux (ESRF, FAME beamline)
- V. Briois (LURE, D44 beamline and SOLEIL Samba)
- A-M Flank (SLS-Soleil, Lucia beamline)
- Funding from the European Community through the INERWASTE Craft European program, and the YPREMA company.

Reactivity of Iron oxide

Reactivity of iron oxide

Structural approach

Nucleation and growth of FeOOH (in water) = Ferrihydrite??

Modeling

Calculation: Translation into a chemical-transport model code (CHESS-HYTEC)

Translation of experimental data into thermodynamic data

For Pb retention sites (Nonat C-S-H model (Nonat et al, 01, Pointeau ,01)SiOH + Ca²⁺ + Pb²⁺ + 3H₂O - 4H⁺ <==>SiOCaPb(OH)₃log K(25°C) = -33.4SiOH + SiOH + SiO_{2(a0)} + Ca²⁺ + Pb²⁺ - H₂O - 4H⁺ <==>SiOH-CaSiOPb-SiOHlog K(25°C) = -23.3

